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Relevance of the research topic and the degree of its development

This work is devoted to the study of strictly positive fragments of modal

logics. Such fragments were considered earlier in the context of universal

algebra, in the study of description logics, and in provability logic.

Strictly positive modal formulas are constructed from variables and the

constant ⊤ using connectives ∧ and ♢. Accordingly, from the point of view of

universal algebra, implications between strictly positive formulas (hereinafter

sequents) correspond to identities in the language of lower semilattices with

several monotone operators. Strictly positive logics correspond to varieties of

such algebras.

One of the �rst works in this direction was the work of M. Jackson [1],

in which semilattices with closure semilattices (CSL) were considered and

the lattice of subvarieties of normal CSLs was described, that is, the lattice

of extensions of strictly positive logic SP(S5). It was also shown there that

�nite CSL varieties with identity have a �nite basis.

Strictly positive modal logics play an important role in research on the

theory of ontological databases and descriptive logic. Ontological databases

are databases equipped with some, necessarily limited, ability to draw logical

conclusions based on available facts. To achieve computational e�ciency,

ontological databases use specialized languages (such as OWL), which are

built based on so-called description logics. From a theoretical point of view,

description logics can be considered as variants of modal logics.

Due to the relevance of the considered problems, the study of description

logics and related problems is currently an actively developing and important

applied area of research.

One of the important problems in the �eld of description logics is the

construction of logical languages that would be both su�ciently expressive

and e�cient when used in ontological databases. Regarding this, the language
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of strictly positive modal logic represents a convenient compromise between

expressiveness and e�ciency.

Thus, the medical terminology database SNOMED CT uses strictly positive

logic EL, described in the works [2, 3, 4], together with an e�ective resolution
algorithm. The EL logic allows one to answer a query in polynomial time

depending on the length of the query and the size of the database, as shown

in the work [2]. For many description logics, algorithms were known that run

in exponential time in the worst case, but are quite applicable in practice

thanks to optimizations. The work [4] shows that the deciding algorithm for

logic EL is not inferior to such algorithms in performance.

Another source of interest in strictly positive modal logics is given by

the research in the �eld of provability logic. Currently, provability logics

are actively used to analyze the properties of formal axiomatic theories [5],

including the study of their ordinal characteristics and the construction of

canonical systems of ordinal notation. As it turns out, for many applications

in proof theory it is su�cient to use the language of strictly positive provability

logic, which leads to simpler systems than systems based on the full language

of modal logic.

Thus, the multimodal provability logic GLP , which is actively used in

this area, is Kripke-incomplete and PSPACE-complete [7], while its strictly

positive fragment RC is both Kripke-complete and polynomially solvable [8].

The closed fragment of logic RC, as shown in [5], is a natural ordinal notation

system for the characteristic ordinal of Peano arithmetic ε0. This system is

used in the analysis of formal arithmetic and its fragments based on the

methods of provability logic.

Next, in the studies of L.D. Beklemishev [9, 10, 11] and other authors [12,

13, 14, 15, 16] new arithmetic interpretations of strictly positive logics were

proposed � for example, for logics RC and RCω the modalities correspond to

uniform re�ection principles. The logic RCω is also polynomially solvable and

complete with respect to a relatively simple class of �nite Kripke models. In

general, we can say that the apparatus of strictly positive logic has occupied
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an important place in research on provability logic and its applications to

the ordinal analysis of logical theories.

This paper addresses general theoretical questions about strictly positive

logics, which are not related to speci�c applications of these logics in descriptive

logic or proof theory. However, these can help in understanding the speci�cs

of strictly positive logics in each of these areas of application. Such general

questions of strictly positive logics were considered in several works by M.

Zakharyashchev, F. Voltaire, A. Kurush, S. Kikot, and others [17, 18, 19, 20,

21, 22, 23].

Particularly important is the recent work by S. Kikot et al. [22], which

considers the question of Kripke completeness for strictly positive logics.

It is known that strictly positive logic is Kripke complete if and only if it

is a strictly positive fragment of some normal modal logic. In contrast to

modal logics that are not Kripke complete, there are quite simple examples of

strictly positive logics that are not Kripke complete � for example, the logic

generated by the axiom ♢p → ♢q. In the paper [22] it is proved that all the

extensions of the modal logic S5, with two exceptions, are Kripke complete;

it is also shown that the Kripke completeness problem is undecidable. The

inverse question is also considered: is it possible to de�ne a given class of

Kripke frames using only formulas of strictly positive logic? The necessary

condition for this and examples of non-de�nable (in this sense) classes of

frames are found. In particular, the class of linear frames characterizing the

logic K4.3 is non-de�nable.

Purpose of work and main tasks In this paper, we study the following

questions about strictly positive logics.

Axiomatization of strictly positive fragments of modal logics. The question

of a convenient strictly positive axiomatization of fragments of standard

modal logics is important for applications in provability logic since we usually

establish the correctness of an arithmetic interpretation by induction on the
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length of the formal derivation. The presence of an axiomatization convenient

for analysis also makes it possible to apply syntactic methods to the study

of strictly positive logics.

Standard logics, for strictly positive fragments of which no convenient

axiomatization was known before the author's work, include logic S5n (corresponding

to epistemic logic with n agents) and logic K4.3 (the logic of transitive

linear frames). In this paper, we �nd such an axiomatization and prove the

solvability of strictly positive fragments of these logics in polynomial time.

Study of modal companions of the strictly positive fragment of logic K4.

We consider the following connection between modal logics and strictly

positive logics [24]. Modal logic L is associated with its strictly positive

fragment SP(L), which is de�ned as the set of all sequents (implications

between strictly positive formulas) from L. Given a strictly positive logic P ,

one can obtain a normal modal logicK⊕P � closure ofK∪P with respect to

the inference rules of modus ponens, substitution and ampli�cation (notation

ML(P )). When P = SP(L), we call L the modal companion of P . The

maps SP and ML together form a Galois correspondence, analogous to the

correspondence between modal and superintuitionistic logics.

For superintuitionistic logics this correspondence has been studied in

detail, starting with [25]. It is known that every superintuitionistic logic

has its greatest modal companion, and that the corresponding maps are

isomorphisms of the lattices of extensions of the intuitionistic logic IPC

and normal extensions of the Grzegorczyk logic Grz (Blok�Esakia theorem,

see [26]). The question of whether the greatest modal companion for strictly

positive logics exists was posed by Beklemishev in [24], in particular, for

the strictly positive fragment of logic K4. We answer this question in the

negative and show that the strictly positive logic SP(K4) has at least two

di�erent maximal modal companions. Until now, no examples of normal

strictly positive modal logics with more than one modal companion were

known.

Well-know examples include the map MLS4.3(P ) = S4.3 ⊕ P , which
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is studied in [21], or the map MLS5(P ) = S5 ⊕ P from the work [1].

Moreover, any strictly positive logic extending SP(S4.3) has the greatest

modal companion [21, Theorems 5.2, 5.3]. The same is true for strictly

positive logics extending SP(S5) � on the one hand, simply because S4.3 ⊂
S5, on the other hand, this fact can be established separately, since all

strictly positive logics extending SP(S5) and all normal extensions of the

logic S5 [27] are known.

In this paper, we analyze extensions of the logic K4 using for this purpose

the canonical frame formulas introduced by M. Zakharyashchev (see [28,

Section 9]). Although we do not obtain a complete description of all modal

companions of the logic SP(K4), we nevertheless describe the set of all modal

companions of SP(K4) in the class of extensions K4 by canonical formulas

of irre�exive frames, including the greatest logic in this set. We also �nd a

criterion for whether some modal logic is a modal companion of SP(K4)

and show that the G�odel-L�ob logic GL is not a maximal modal companion

of SP(K4). This answers another question posed by L.D. Beklemishev [24].

The implication relation on strictly positive formulas as a well-quasi order.

The work also considers the implication relation on strictly positive formulas

as a quasiorder. The main result of this section of the dissertation is that in

K4 logic this relation, limited to formulas of a �xed �nite number of variables,

is a well-quasi order, that is, it contains neither in�nite decreasing chains nor

in�nite antichains.

The theory of well-quasi orders is well-known and interesting from the

point of view of set theory and combinatorics, since many natural structures,

such as order on words and order on trees, the relation ¾to be a minor¿ in

graphs, are well-quasi orders. One of the most important such structures, as

shown in the article [31], is a well-quasi order by embedding on linear orders.

Well-quasi orders are also actively used to prove the termination of term

rewriting systems (for example, as in the article [32]) and are used to study

the decidability problem of fragments of predicate logic (see [33]). Applications

of well-quasi orders in proof theory are also known � for example, the �nite
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form of Kruskal's theorem provides an example of a natural combinatorial

statement that is not provable in the strong arithmetic theory ATR0 [34]. A

more detailed logical analysis of Kruskal's theorem, together with its �nite

form and the derivation of the ordinal type of a well-quasi order on trees,

is given in the article [35]. The article [36] discusses the correspondence

between another combinatorial statement independent of Peano arithmetic �

Worm's principle � and the well-known well-quasi order on words of natural

numbers or, which is the same, on closed modal formulas of multimodal logic

of provability GLP−. This well-quasi order has a similar nature to the one

studied in this work.

Recent results on well-quasi orders are collected in the book [37], in

particular, in the article [38] various ordinal characteristics of well-quasi

orders, including their ordinal type, are considered. We �nd upper and lower

bounds for the ordinal type for the studied well-quasi order on strictly positive

formulas, but there is currently a gap between these bounds.

Scienti�c novelty

All results presented in the dissertation are new.

Theoretical and practical signi�cance of the work

The dissertation is theoretical. The results obtained in it are important

for modal logic, as well as for the theory of well-quasi orders.

Research methods

The thesis uses the canonical model method, the method of adding vertices

to the model, tree linearization, characteristic formulas and other classical

methods of modal logic. Kruskal's theorem and the quasi-embedding lemma

from the theory of well-quasi orders are also used.

The main defense points
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1. A �nite axiomatization and a result on the polynomial solvability of a

strictly positive fragment of logic K4.3 are obtained.

2. It has been proven that the natural implication order in K4 on strictly

positive formulas of a �xed number of variables is a well-quasi order;

estimates for its ordinal type are also obtained.

3. A criterion is obtained for whether a modal logic is a modal companion

of K4+, and with its help it is established which of the extensions of K4

by co�nal formulas are modal companions. In particular, it is proven

that K4+ has at least two di�erent maximal modal companions.

Approbation of research

Reports at conferences and seminars:

� International Conference ¾Workshop on Proof Theory, Modal Logic and

Re�ection Principles¿, Russia, 2017.

� International Conference ¾Workshop on Proof Theory, Modal Logic and

Re�ection Principles¿, Spain, 2019.

� Seminar of the Mathematical Logic Department ¾Provability theory¿,

Moscow Institute of the Academy of Sciences;

� Seminar ¾Modern problems of mathematical logic¿, Higher School of

Economics.

Publications

The main results on the topic of the dissertation are presented in 3 papers.

Two of them were published in journals included in the list of the Higher

Attestation Commission; 2 of them � in journals indexed by the Scopus

database; 2 of them � in journals indexed by the Web of Science database. All

results submitted for defense were obtained by the author of the dissertation
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independently.

Contents

The introduction substantiates the relevance of the research carried out

within the framework of this dissertation and provides an overview of known

results associated with various properties of strictly positive fragments.

In Section 2, the following de�nitions are given:

Modal logic formulas are built-up from variables Var = {p0, p1, . . .} and

the constant ⊤ using logical connectives ∧, ¬ and unary modality ♢. The

symbols ∨, →, □p = ¬♢¬p and □+p = p ∧ □p are considered standard

abbreviations.

Normal modal logic is a set of modal formulas, closed with respect to

inference rules modus ponens, substitution, and necessitation. The smallest

normal modal logic is called K; the symbol ⊕ denotes the addition of a

formula to the logic and next taking the closure with respect to the mentioned

rules. E.g., K ⊕ (□p → □□p) is the logic K4.

Strictly positive formulas are the modal formulas, built-up using only the

connectives ∧ and ♢.

A sequent is a formula of the type A → B, where A and B are strictly

positive formulas.

The strictly positive fragment of a modal logic L is the set of all sequents

from L (notation SP(L)).

The calculus of strictly positive logic K+ consists of the following axioms

and inference rules:

1. A → A,A → ⊤,
A → B, B → C

A → C

2. A ∧B → A, A ∧B → B,
A → B,A → C

A → B ∧ C

3.
A → B

♢A → ♢B

In general, a strictly positive logic is a set of sequents, closed with respect

to the inference rules listed above. This corresponds to the semantics of lower
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semilattices with monotone operators (SLO, for short): a sequent is derivable

in K+ if and only if it is true in every SLO. By K4+ we denote the calculus

K+ together with the axiom ♢♢A → ♢A.

Next, we de�ne standard Kripke semantics:

◦ A Kripke frame is a pair F = (W,R), where W is a set, and R is a

binary relation on W .

◦ A Kripke model is a triple M = (W,R, V ), where (W,R) is a Kripke

frame, and V , or valuation is a map V : Var → 2W .

◦ The valuation on variables V (p) determines the valuation on formulas

V (φ). The valuation is de�ned by induction on φ: V (⊤) = W , V (¬φ) =
W \V (φ), V (φ1∧φ2) = V (φ1)∩V (φ2), V (♢φ) = {x | ∃y ∈ V (φ)xRy}.

◦ We write M, x |= φ if x ∈ V (φ) and M |= φ if V (φ) = W . We also

F |= φ if M |= φ for every model M based on this frame.

◦ Let L be a modal logic, and F � a Kripke frame; we say that F is a

frame for L if φ ∈ L ⇒ F |= φ for every modal formula φ.

◦ Let C be a class of Kripke frames (or models), and L � a modal logic.

We say that L is characterized by C (or that L is the logic for class C)

if φ ∈ L ⇔ F |= φ for every modal formula φ and frame/model F ∈ C.

E.g., the logic K4 is the logic of all transitive frames.

Also, in the thesis we discuss the logics S5 = K4 ⊕ (□p → p) ⊕ (p →
□♢p) � the logic of equivalence relations, K4.3 = K4 ⊕ □(□+p →
q) ∨ □(□+q → p) � the logic of linear frames and G�odel-L�ob logic

GL = K4⊕□(□p → p) → □p � the logic of transitive frames that do

not contain in�nite ascending chains.

◦ For denoting the variables that are true in some vertex (in a Kripke

model), we use the notation Var(x) = {p | x ∈ V (p)}.
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Next, we de�ne homomorphism and canonic trees.

Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be some transitive Kripke

models. A map f : W1 → W2 is a homomorphism if:

1. ∀x, y ∈ W1 xR1y → f(x)R2f(y);

2. ∀x ∈ W1 Var1(x) ⊂ Var2(f(x)).

In case both models have roots and f(r(M1)) = r(M2), we call f a root-

preserving homomorphism.

For every strictly positive formula A its canonic tree T [A] is a tree-like

Kripke model, de�ned by induction as follows.

In case A is a variable or the constant ⊤, T [A] is a singleton validating

only A.

In case A = B ∧ C, T [A] is made from T [B] and T [C] by joining their

roots. A variable is true in the new root, if and only if it is true in either the

root of T [B] or the root of T [C].

When A = ♢B, T [A] is obtained from T [B] by adding a new root, which

reaches every vertex of T [B] and invalidates every variable.

Theorem 1. [8] Let A,B be strictly positive formulas. The following statements

are equivalent:

(i) K4+ ⊢ (A → B);

(ii) T [A], r(T [A]) |= B;

(iii) there exists a root-preserving homomorphism f : T [B] → T [A].

Next, following the book by A. Chagrov and M. Zakharyaschev [28], we

de�ne canonical frame formulas α(F ,D,⊥) and α(F ,D) (here F is a �nite

transitive rooted Kripke frame, D � a subset of antichains in F , excluding

re�exive singletons, D# � the set of all such antichains in F) and mention

how they are related to normal extensions of K4.

Theorem. [28, Theorem 9.39] For every transitive frame S,
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(i) S ̸|= α(F ,D,⊥), if and only if there exists a co�nal reduction from

S onto F , satisfying the co�nal domain condition (CDC) for every

antichain in D;

(ii) S ̸|= α(F ,D), if and only if there exists a reduction from S onto F ,

satisfying CDC for every antichain in D.

Theorem. [28, Theorem 9.43] There exists an algorithm, which takes any

modal formula φ as the input and outputs the set of canonical frame formulas

α(F1,D1,⊥), α(F2,D2,⊥), . . . , α(Fn,Dn,⊥), such that K4⊕φ = K4⊕α(F1,D1,⊥)⊕
α(F2,D2,⊥)⊕ . . .⊕ α(Fn,Dn,⊥).

We also de�ne well-quasi order and its ordinal type.

A pair (A ,⪯), where⪯ is a binary relation on set A , is called a quasiorder

if⪯ is re�exive and transitive. Similarly, a partial order (or a partially ordered

set) is a re�exive, transitive, and antisymmetric relation; by factorizing on

the equivalence relation, we can obtain a partially ordered set from every

quasiorder.

A quasiorder (A ,⪯) is called well-quasiorder, if for every in�nite sequence

a1, a2, . . . , an, . . . of elements from A there exists a pair of indexes i < j such

that ai ⪯ aj. We will further use an equivalent de�nition, namely, every

in�nite sequence contains an in�nite non-decreasing subsequence. A well-

order we will call an antisymmetric well-quasiorder; it is clear that, if (A ,⪯)

is a well-quasiorder, then (A /∼,⪯) (quotient by the relation ⪯) is a well-

order.

Given a well-order (X,⪯), one can consider all the linear orders containing

it and �nd the supremum of corresponding ordinals, we will call such a

supremum ordinal type and denote as o(X,⪯). In the work [39] it is shown

that this supremum is indeed a maximum (i.e., there exists a linear order

containing ⪯ and corresponding to the ordinal o(X,⪯)).

The ordinal type of a well-quasiorder (X,⪯) is the ordinal type of the

corresponding well-order (X/∼,⪯).

In Section 3 we consider the strictly positive fragment of polymodal logic
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S5m, i.e. the logic of m equivalence relations. We �nd its axiomatization S5+m

by translating the modal axioms, which correspond to transitivity, re�exivity,

and Euclidean relations of Kripke frames, into the strictly positive language.

Next, we formulate a

Theorem 2. A sequent is derivable in S5+m if and only if it is derivable in

S5m.

To prove the theorem, we use the canonical model method. We de�ne the

model M = (W,R1 . . . Rm, v), which consists of all nonempty S5+m theories,

and show that a sequent is true in this model if and only if it is derivable

in S5+m; as all the relations in M are equivalence relations, this proves the

theorem.

Next, we de�ne an analog of the canonic tree (T̃ ) for the logic S5m and

prove a statement, which is similar to Theorem 1:

Theorem 3. Let A,B be some strictly positive formulas. The following

statements are equivalent:

(i) S5+m ⊢ (A → B);

(ii) T̃ [A], r(A) |= B;

(iii) there exists a root-preserving homomorphism f : T̃ [B] → T̃ [A].

As for the derivability checking of the sequent A → B in the logic S5m it

su�ces to check whether B is true in the model T̃ [A], this proves

Corollary. The strictly positive fragment of the logic S5m is polynomially

decidable.

In Section 4 we study the strictly positive fragment of K4.3, the logic

of linear frames. We show that, given a canonic tree, we can obtain all its

linearizations by repeatedly applying elementary transformations (motivated

by the idea from an unpublished work of S. Kaniskin [40], where a similar

thing is proposed for the strictly positive fragment of K4.3 with disjunction).
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Next we consider the sequent comwit2 = ♢(p ∧ ♢q1) ∧ ♢(p ∧ ♢q2) → ♢(p ∧
♢q1 ∧ ♢q2), which substitutes the (.3) axiom in strictly positive language,

de�ne the antichain completion M⋎ of a given Kripke model M and prove

the following theorem:

Theorem 4. Let A,B be strictly positive formulas. The following statements

are equivalent:

(i) T [A]⋎, {r(A)} |= B;

(ii) K4+ + comwit2 ⊢ A → B;

(iii) (A → B) ∈ K4.3;

(iv) B is true at the root of every linearization of T [A].

Finally, we point out that the logic of �ower-like frames (which, in di�erence

from linear ones, may contain pairwise incomparable maximal elements) has

the same strictly positive fragment as the logic K4.3.

We call a relation R �ower-like if it is transitive and all non-maximal

elements are comparable.

Theorem 5. The strictly positive fragment of the logic K4.3 equals to the

positive fragment of the logic of �ower-like frames.

In Section 5 we prove polynomial decidability of the strictly positive

fragment of K4.3. For this purpose, we de�ne an algebraic structure on

the Kripke model M = (W,R, v). Precisely, we de�ne a function g, which,

given a strictly positive formula, evaluates some set of subsets of W , and a

function f , which, given such a set, outputs a set of antichains in W . By

some supplementary lemmas, showing the properties of these functions, we

prove the following

Theorem 6. Let X be a vertex in M⋎ (i.e., an antichain in W ), and A is

a strictly positive formula. Then M⋎, X |= A, if and only if X ∈ f(g(A)).
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As the functions f, g are polynomially computable, the polynomial decidability

of the strictly positive fragment of K4.3 follows from Theorems 4, 6.

In Section 6 we consider the set Fm of strictly positive formulas in a �xed

�nite set of variables and the relation ⪯ on it, de�ned as A ⪯ B, if in K4

B → A is derived (that is, the inverse of the natural order of implication).

We prove the following

Theorem 7. The relation ⪯ is a well-quasiorder.

Then the de�nitions of a negative formula, a negative theory, a dual

operator * on formulas, and a theory dual to a given strictly positive one are

given; we prove

Theorem 8. Let T be a strictly positive theory on a �nite set of variables,

closed under the axioms and inference rules of K4+. Then the dual theory

T ∗ has a �nite axiomatization.

Finally, using auxiliary lemmas (including the ordinal type of order on

strings [39] and the quasi-embedding lemma [41]), we obtain upper and lower

bounds for the ordinal type of the considered well-quasiorder ⪯:

Theorem 9. The ordinal type (Fm,⪯) on n variables is at least ωω2n−1
.

Theorem 10. The ordinal type (Fm,⪯) on n variables is at most ε0 × 2n.

In Section 7 we introduce the concept of a base set for a Kripke model

� a set of Kripke models, which is equivalent (in the sense of validating an

arbitrary strictly positive formula) to the given Kripke model. With its help,

the following criterion for a modal companion is proved:

Theorem 11. Let L be a normal extension of K4, which is characterized by

the class of models C. Then L is a modal companion of K4+ if and only if

for any strictly positive formula A, there is a set of models M(A) that is the

base set for T [A] and a subset of C.

Also, using the properties of a well-quasiorder from the previous section,

a stronger version of this criterion is proven:
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Theorem 12. Let L be a normal extension of K4, which is characterized

by the class of models C. Then L is a modal companion of K4+ if and

only if for any strictly positive formula A, there exists a �nite set of �nite

models M(A), which is the base model for T [A], and each model in M(A) is

a submodel of some model in C.

In Section 8 we use a criterion to determine which logics are (or are

not) modal companions of K4+. For convenience, we introduce the following

notation: F0 � the minimal nonlinear frame with a root, F1 � the minimal

non-tree frame with a root, F lin
n � linear frame from n vertices. We prove

Lemma 1. The logic K4⊕α(F lin
n ,D#,⊥) is not a modal companion of K4+.

Lemma 2. The logic K4 ⊕ α(F0, ∅,⊥) ⊕ α(F1, ∅,⊥) is a modal companion

of K4+.

Theorem 13. Let F be a set of �nite irre�exive transitive rooted frames.

Then the logic K4 ⊕ {α(F ,D,⊥) | F ∈ F} (with D being some arbitrary

sets of antichains) is a modal companion of K4+, if and only if F does not

contain a linear frame.

The next two lemmas show that GL is not a maximal modal companion:

Lemma 3. Let F be the set of all non-linear frames with height k. Then the

logic GL⊕ {α(F ,D#,⊥) | F ∈ F} is a modal companion of K4+.

Let Fk denote the set of all non-linear frames with height at most k, and

Lk = GL⊕ {α(F ,D#,⊥) | F ∈ Fk}.

Lemma 4. The logic
∞⋃
k=1

Lk is a modal companion of K4+.

Lemma 5. The logic GL⊕ α(F0, ∅,⊥) is not a modal companion of K4+.

As (separatedly) the logicsGL andK4⊕α(F0, ∅,⊥) are modal companions

of K4+, we conclude

Theorem 14. The strictly positive logic K4+ has at least two di�erent

maximal modal companions.
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In conclusion, the main results of the work are presented, which are as

follows:

1. A �nite axiomatization and a result on the polynomial solvability of a

strictly positive fragment for the logic K4.3 are obtained.

2. It has been proven that the natural sequence order in K4 on strictly

positive formulas of a �xed number of variables is a well-quasi order.

We also provide lower and upper bounds of its ordinal type.

3. A criterion is obtained for whether a modal logic is a modal companion

of K4+, and with its help it is established which of the extensions of K4

by co�nal formulas are modal companions. In particular, it is proven

that K4+ has at least two di�erent maximal modal companions.

Several directions for further research are also indicated. First, it is interesting

to further analyze extensions of K4 to see if they are modal companions

of K4+, including getting more examples of modal formulas that have non-

trivial consequences in the form of sequents (as shown in Lemma refnotcomp).

Secondly, it would be interesting to more accurately estimate the ordinal

type of a well-quasiorder on strictly positive formulas in n variables. From

the bounds we obtained, it is unclear whether this ordinal type depends on

the parameter n. The third possible direction is the study of strictly positive

fragments of other modal logics, in addition to the considered S5m and K4.3;

for example, for each logic from this work that is not a modal companion of

K4+, we indicated the speci�c sequent that this logic contains. Starting from

this sequent, one can �nd an axiomatization of a strictly positive fragment

of one of these logics.
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